CBCS Scheme

Fourth Semester B.E. Degree Examination, June/July 2018 Design and Analysis of Algorithms

Time: 3 hrs.

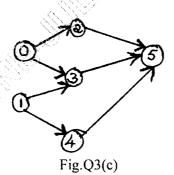
Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Write an algorithm to find the maximum element in an array of n element. Give the mathematical analysis of this non-recursive algorithm. (06 Marks)
 - b. Explain the asymptotic notations BigO, Big Ω and big theta used to compare orders of growth of an algorithm. (06 Marks)
 - c. Explain with an example how a new variable count introduced in a program can be used to find the number of steps needed by a program to solve a particular problem instance.

(04 Marks)


OR

- 2 a. Write a recursive function to find and print all possible permutations of a given set of n elements.
 - b. Solve the recurrence relation: M(n) = 2M(n-1) + 1. Take M(1) = 1, M(n) is given for n > 1. (05 Marks)
 - c. Define algorithm. What are the criteria that an algorithm must satisfy? (06 Marks)

Module-2

- 3 a. Write a function to find the maximum and minimum elements in a given array of n elements by applying the divide and conquer technique. (06 Marks)
 - b. Explain the divide and conquer technique. Give the general algorithm DAndC(P)[Where P is the problem to be solve] to illustrate this technique. (04 Marks)
 - c. Apply source removal method to obtain topological sort for the given graph in Fig.Q3(c).

 (06 Marks)

OR

- 4 a. Explain the merge sort algorithm. Illustrate with an example and give the worst case efficiency of merge-sort. (08 Marks)
 - b. Apply quick sort algorithm to the following set of numbers. 65, 70, 75, 80, 85, 60, 55, 50, 45.

(08 Marks)

(08 Mark -

Module-3

- 5 a. Apply greedy method to obtain an optimal solution to the knapsack problem given M = 60 $(w_1, w_2, w_3, w_4, w_5) = (5, 10, 20, 30, 40) (p_1, p_2, p_3, p_4, p_5) = (30, 20, 100, 90, 160)$. Find the total profit earned. (04 Marks)
 - b. Explain Huffman algorithm. With an example show the construction of Huffman tree and generate the Huffman code using this tree. (06 Marks)
 - c. Apply Prim's algorithm to obtain a minimum spanning tree for the given weighted connected graph. [Fig.Q5(c)]. (06 Marks)

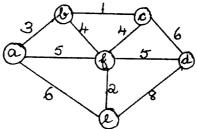


Fig.Q5(c)

OR

- a. Explain the bottom up heap construction algorithm with an example. Give the worst case efficiency of this algorithm. (08 Mark)
- b. Apply single source shortest path problem assuming vertex a as source. [Refer Fig.Q6(b)].

 (08 Mark)

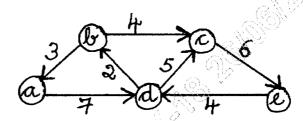



Fig.Q6(b)

Module-4

- 7 a. Explain multistage graph with an example. Write multistage graph algorithm using backward approach. (08 Marks)
 - b. Apply Floyd's algorithm to solve all pair shortest path problem for the graph given below Fig.Q7(b).

(02 Marks)

OR

- 8 a. Explain Bellman Ford al to find shortest path from single source to all destinations for a directed graph with negative edge cost. (08 Marks)
 - b. Apply Warshall's algorithm to the digraph given below in Fig.Q8(b) and find the transitive closure. (08 Marks)

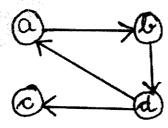


Fig.Q8(b)

Module-5

- 9 a. Apply backtracking method to solve subset—sum problem for the instance d = 30 and S={5, 10, 12, 13, 15, 18}. Give all possible solutions. (08 Marks)
 - b Explain how travelling salesman problem can be solved using branch and bound technique.

 (06 Marks)
 - c. Define deterministic and non deterministic algorithms.

OR

- 10 a. What is Hamiltonian cycle? Explain the algorithm to find the Hamiltonian cycle in a given connected graph. Write the functions used for generating next vertex and for finding Hamiltonian cycles.

 (09 Marks)
 - b. Apply the best-first branch-and-bound algorithm to solve the instance of the given job assignment problem. (07 Marks)

Job1	Job2	Job3	Job4	
9	2	7	8	Person a
6	4	3	7	Person b
5	8	1\	∂8	Person c
7	6	9	5 4 J	Person d